Subfactors Associated to Compact Kac Algebras

نویسنده

  • TEODOR BANICA
چکیده

We construct inclusions of the form (B0 ⊗ P ) G ⊂ (B1 ⊗ P ) , where G is a compact quantum group of Kac type acting on an inclusion of finite dimensional C-algebras B0 ⊂ B1 and on a II1 factor P . Under suitable assumptions on the actions of G, this is a subfactor, whose Jones tower and standard invariant can be computed by using techniques of A. Wassermann. The subfactors associated to subgroups of compact groups, to projective representations of compact groups, to finite quantum groups, to finitely generated discrete groups, to vertex models and to spin models are of this form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Institute for Mathematical Physics Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares Compact Kac Algebras and Commuting Squares

3 We consider commuting squares of nite dimensional von Neumann algebras having the algebra of complex numbers in the lower left corner. Examples include the vertex models, the spin models (in the sense of subfactor theory) and the commuting squares associated to nite dimensional Kac algebras. To any such commuting square we associate a compact Kac algebra and we compute the corresponding subfa...

متن کامل

Quantum Groups Acting on N Points, Complex Hadamard Matrices, and a Construction of Subfactors

We define subfactors of the form (B0 ⊗ P ) G ⊂ (B1 ⊗ P ) , where G is a compact quantum group acting on a Markov inclusion of finite dimensional algebras B0 ⊂ B1 and acting minimally on a II1 factor P . Their Jones towers and their higher relative commutants can be computed by using extensions of Wassermann’s techniques. These subfactors generalise the group-subgroup subfactors, the diagonal su...

متن کامل

ESI The Erwin Schr odinger

3 We consider commuting squares of nite dimensional von Neumann algebras having the algebra of complex numbers in the lower left corner. Examples include the vertex models, the spin models (in the sense of subfactor theory) and the commuting squares associated to nite dimensional Kac algebras. To any such commuting square we associate a compact Kac algebra and we compute the corresponding subfa...

متن کامل

Compact Kac Algebras and Commuting Squares

We consider commuting squares of finite dimensional von Neumann algebras having the algebra of complex numbers in the lower left corner. Examples include the vertex models, the spin models (in the sense of subfactor theory) and the commuting squares associated to finite dimensional Kac algebras. To any such commuting square we associate a compact Kac algebra and we compute the corresponding sub...

متن کامل

Braided Subfactors, Spectral Measures, Planar algebras and Calabi-Yau algebras associated to SU (3) modular invariants

Braided subfactors of von Neumann algebras provide a framework for studying two dimensional conformal field theories and their modular invariants. We review this in the context of SU(3) conformal field theories through corresponding SU(3) braided subfactors and various subfactor invariants including spectral measures for the nimrep graphs, A2-planar algebras and almost Calabi-Yau algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008